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Effects of protein maturation on the noise in gene expression
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Fluorescent proteins are frequently used as reporters for gene expression in living cells, either by being
expressed in tandem with a protein of interest or through the creation of fusion proteins. The data yielded by
the fluorescence output are of considerable interest in efforts to formulate quantitative models of cellular
behavior underway in fields such as systems biology and synthetic biology. An often neglected aspect of these
proteins, however, is their maturation: Before a fluorescent protein can generate a fluorescent signal, it must
mature through a series of steps (folding, cyclization, and oxidation) that may take from many minutes to over
a day. The presence of these maturation steps creates a distinction between the observed gene expression
profile and the actual profile. We examine this effect through a simplified gene expression model and conclude
that fluorescent protein maturation can have significant effects on estimates of both the mean protein levels and
the variability in gene expression. The model shows that in many regimes, the observed variability will be
increased by the maturation process, but indicates the existence of regimes in which the observed variability
will actually be less than the true variability of the target protein. The latter effect arises from a low-pass
filtering effect introduced by the chain of maturation reactions. The results suggest that the maturation of
fluorescent proteins should be taken into account when using such proteins as quantitative indicators of gene

expression levels.
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I. INTRODUCTION

The recent advent and refinement of sophisticated tech-
niques for probing and manipulating the internal workings of
living cells has led to the emergence of two new fields: sys-
tems biology [1-5], which aims to assemble the new data
sets into models for the behavior of sets of coupled genes,
and synthetic biology [6-10], which generally aims to use
experimental molecular biology to alter cellular behavior in
specific ways, thus exerting control over a cell’s internal dy-
namics. The fields share a focus on quantitative, mathemati-
cal modeling of biological processes, and both require corre-
spondingly quantitative experimental data able to provide
accurate reporting of these processes as they proceed inside
the cell.

One widely studied aspect of gene expression dynamics is
the stochasticity or “noise” associated with the process. Pro-
cesses inside the cell are driven by the sets of highly coupled
biochemical reactions, and the resulting dynamics may be
approximated by ordinary differential equations, using stan-
dard chemical kinetics approaches [11,12]. There is consid-
erable evidence, however, that biological processes, and gene
expression in particular, are subject to significant fluctuations
and are not purely deterministic [13—18]: A genetically iden-
tical population of bacteria growing under identical condi-
tions, for example, will exhibit a substantial range of gene
expression levels even from simplified synthetic constructs
[19-23]. This variability arises partly from non-negligible
fluctuations in the underlying biochemical reactions, called
the “intrinsic” noise in the expression of a given gene of
interest, and partly from cell-to-cell differences in the back-
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ground against the gene of interest is expressed, incorporat-
ing effects such as variations in numbers of available en-
zymes, called the “extrinsic” noise [12-14,16-18,21-27].

Green fluorescent proteins (GFPs), a natural fluorophore
derived from the jellyfish Aequorea victoria and related fluo-
rescent proteins, have found wide application in systems and
synthetic biology [1-10,28,29]. By providing a fluorescent
signal from a protein that may be incorporated into a living,
healthy cell and detected from outside without causing cell
death, these proteins offer a key advantage over other protein
monitoring such as Western blotting or microarray technolo-
gies, wherein cells must be destroyed in the process of the
assay, making real-time observation of living cells impos-
sible. Both systems and synthetic biology have made exten-
sive use of plasmid-borne systems expressing fluorescent
proteins as reporters in single-celled organisms, either as de-
liberately simplified testing grounds for their models
[12,13,17,20-22,26,27,30] or as the basis for controllers able
to function inside growing cells and alter their behavior
[6,7,9,19,31-36].

Models formulated of these gene expression systems con-
nect to experimental results by using the fluorescence inten-
sity at a specified wavelength as an observable presumed to
be proportional to the number of proteins being expressed in
the cell. While there is a reasonable basis for presuming that
such a proportionality exists, it is not exact because of the
internal dynamics of fluorescent proteins themselves, which
can perturb the observed fluorescence away from being a
true representation of the state of the proteins in the cell. In
particular, the proteins must undergo a process of “matura-
tion” before they become fluorescent; the process involves
the folding of the protein, cyclization of a tripeptide motif,
and oxidation of the cyclized motif [37-39]. These steps can
take from a few minutes (for proteins such as the yellow-
fluorescing Venus), to hours (GFP), up to over a day (DsRed,
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a redshifted variant of GFP) [28,29,40]. Until the proteins
have finished their maturation, they are invisible to fluores-
cent detection techniques, implying that in any given cell
there will be a population of unobserved proteins in addition
to those that are detected. This maturation process, while
known and acknowledged, is not generally incorporated ex-
plicitly into gene expression models, and this has the poten-
tial to impact both estimates of the numbers of proteins
present [41-43] and estimates of the variability in gene ex-
pression [13,17,20-22,26,27,30]. Here, we examine the ef-
fect of fluorescent protein maturation on the observed level
and variability of gene expression by comparing the number
and variability estimates in simple models with and without
the maturation steps included, the latter being equivalent to
instant maturation. We find that the observed number and
variability can in fact differ substantially from the true vari-
ability when maturation is included. At low protein produc-
tion rates, the effect is dominated by the size of fluctuations
in the reaction rates and the increased observed variability is
attributable to the decreased rate of production of the ma-
tured proteins as compared to the true number of proteins
being produced. At higher production rates, however, the
maturation steps act as a low-pass filter, removing some of
the noise in the protein production process and yielding ob-
served variabilities that are lower than the true values.

We begin by formulating a model of the biochemical pro-
cesses underlying gene expression, neglecting explicit repre-
sentation of intermediate steps such as the elongation of tran-
script and peptide chains and the binding and open complex
formation of enzymes such as RNA polymerase, and leaving
out explicit consideration of the process of cell growth and
division. This simplified system is amenable to analytical
treatment, and we present the results of solving the master
equation for the stochastic processes representing the chemi-
cal reactions. We then examine the noise power spectra for
this case, again obtaining analytic solutions that illustrate the
low-pass filtering effect of the maturation steps. In summary,
our results indicate that while fluorescent proteins are an in-
valuable tool for characterizing and quantifying gene expres-
sion, their output must be interpreted with caution, in par-
ticular with regard to the observed levels of variability.

II. GENE EXPRESSION MODEL
A. Analysis of steady-state statistics

The molecular basis of gene expression is well established
[44,45]; particularly accessible overviews have been pre-
sented by Ptashne and Gann [46,47]. Here, we consider a
generalized gene expression model as shown in Fig. 1. The
process begins with RNA polymerase (RNAP) binding to a
DNA strand, forming an open complex, and initiating the
process of transcription, wherein a messenger RNA (mRNA)
strand is produced, carrying the genetic information. The
mRNA is translated into a protein by binding with a ribo-
some, which decodes the triplet nucleotide codons of the
gene into a sequence of amino acids. This model is highly
simplified, but it can generate the same statistical behavior as
a more elaborate model [48,49]. If the protein in question is
a fluorescent reporter, it must undergo three more steps be-
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FIG. 1. (Color online) Schematic depiction of the simplified
gene expression model considered here. The enzyme RNA poly-
merase (RNAP) binds to a DNA strand and produces a messenger
RNA strand (mRNA), which is then translated by a ribosome into a
protein. Fluorescent proteins must then fold, cyclize, and oxidize
before they become “mature” and thus able to fluoresce and be
detected experimentally. This schematic is converted into the set of
biochemical reactions (1)—(10).

fore it can generate fluorescence: folding, cyclization, and
oxidation. Each species in the chain is also subject to degra-
dation, represented in Fig. 1 and Eqgs. (1)—(10) by processes
terminating in the null set symbol.

The gene expression model in Fig. 1 may be approxi-
mated as a system of elementary biochemical reactions, as
follows:

|

RNAP + DNA ——— RNAP + DNA + mRNA, (1)

/]

mRNA —— @, (2)

<
mRNA + ribo ——— mRNA + ribo + protein, (3)

2

protein ——— @, “4)
‘s
protein ——— protein-folded, (5)
c4
protein-folded —— @, (6)
C6

protein-folded ——— protein-cyclized, (7)

cy
protein-cyclized —— @, (8)

7

protein-cyclized ——— protein-matured, )

€4
protein-matured —— @. (10)

Using the common simplifying assumption that our bio-
chemical reactions occur in a well-stirred volume and ne-
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FIG. 2. (Color online) Time series of one realization of the
stochastic process defined by biochemical reactions (1)-(10), gen-
erated by a Monte Carlo method [50,51], at transcription rate:
0.46 s7!, translation rate: 0.0047 s~!, and maturation time 28 min.
From top (greatest number of molecules) to bottom (least number),
the traces represent the following species: protein, protein-folded,
protein-cyclized, and protein-matured (the fluorescing species vis-
ible experimentally); mRNA numbers are not shown. The horizontal
lines represent the mean and =3 standard deviations for each spe-
cies, calculated analytically by solving Eqgs. (19) and (20).

glecting macromolecular crowding effects [52,53], the spa-
tial information about individual molecules may be ignored.
In this approximation, the dynamics of the system is describ-
able using ordinary differential equations when the reaction
rates are high, but in lower-rate (generally corresponding
with lower number) regimes we must consider fluctuations,
treating each reaction as a Poisson process and describing the
resulting stochastic process using the chemical master equa-
tion [17,50,51,54-56]. Making the further approximation
that the numbers of RNAP, DNA, and ribosome (ribo) mol-
ecules are constant, the model becomes linear and the master
equations may be solved analytically. The state of the system
is represented by a five-dimensional vector giving the num-
ber of molecules of each species not being kept constant: n
=(n,,n,,n3,n4,ns), where the elements are the numbers of
molecules of species mRNA, protein, protein-folded,
protein-cyclized, and protein-matured, respectively (see Fig.
2). Here, we adopt a symbol system employed by Gadgil et
al. [57] to represent the four categories of reactions occurring

Ci

in the system: production from a source @—n;, degradation
C()l'l
Li lj
n;—¢, conversion n;—n;, and catalytic production from a
cal

C’J

source, n;—n;+n;, where c; or c;; is the stochastic reaction
constant [50]. Usmg this symbol system the corresponding

reaction-rate equations may be written as

dn ’ d at

Z:CS X1-C'Xn+C*"Xn+C"Xxn, (11)
where 1=(1,1,1,1,1)7, C’=diag{c}, C?=diag{c?}, c
=c™ and

lj’
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For our model, C*’, CY, C**, and C*™ are

Cl”RNAP”DNA 0
0
CSI
0

(=)

=)
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0
0
0
0000
0 0000
=0 00 O0O0], (13)
0 00O00O0
0 00O0O
¢ 00 0 O
0 ¢4 O 0
Ci=1 0 0 ¢, O O |, (14)
0 0 0 ¢4 O
0 0 0 0 ¢4
0 0O0O0O 0 00O00O
Cilgpe 00 0 0 c; 0000
C™= 0 O0O0O0O0]= 000 0],
0O 00O00O0 0 00O0O0
0 0O0O00O 0 00O0O0
(15)
and
0 0 0 0 O
0 —¢cs O 0 O
C"=10 ¢5 —-¢c¢ 0 0|, (16)
0 0 ¢ —-¢c; 0

0 0 0 ¢ O

where npna, rnaps and 75, represent the number of DNA,
RNAP, and ribosomes, respectively, and the rate constants
are chosen to reflect reasonable values for gene expression in
the bacterium Escherichia coli [49,58]. Throughout the fol-
lowing, we use maturation time rather than rate to character-
ize the maturation steps, where the maturation time is the
average time required to mature a fraction (1—1/e) of the
protein. Fluorescent reporter proteins often have long degra-
dation half-lives, on the order of tens of hours [28,59,60],
and we thus make the simplifying assumption that the deg-
radation of the proteins considered here is dominated by di-
Iution due to cell growth, in which the protein number is
halved after each cell division (a 24-min cycle in our model
E. coli); our results are qualitatively unchanged for faster
protein degradation rates, but we will not present this case in
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detail, here. See the Appendix for a complete list of stochas-
tic reaction constants and other parameters.

The deterministic reaction-rate equations do not capture
the stochastic behavior of the system. For this, we represent
the probability density associated with each state of the num-
ber vector as P(n) and write the master equations for the
time evolution of this probability density:

dP(n.1) _ é

C;-P...,ni—l,...,t
ao=z | cn )

+1,...,1)

5
+2 [ClCJOIl(nj_'_ I)P(...,n[‘— 1, ,nj
j=1

+CM(nP(....m;= 1, ....0) = n;P(n,1))
—C{mP(.. .o+ 1, ....00 —nPm0)] | (17)

Equation (17) is not directly solvable. Exact solutions for
the chemical master equation have been found for the case of
monomolecular reactions [56], but the presence of the cata-
lytic reaction (3) means that our system does not fall into this
category. We obtain a partial solution of Eq. (17) using
moment-generating functions. In this approach, we multiply
both sides of the master equations by dummy variables
Zi',...,z5°> and sum over all equations to obtain the generat-
ing function G(z,0)=2_Z",...,Z5P(n), where z
=(2,,22,23.24,25) [55]. The time evolution of this function is
given by

5
0G(z,t
WD S (- 1)<c5,- X Glz.1)
ot i=1
> 0G(z,1)
+Z (CZQ“+C?;“ ij—Cidj X ﬁ—’)
i=1 <j
(18)

Here we focus on the first and second moments of the dis-
tribution, taking the first and second derivatives of the gen-
erating function,

M,(1) = &Z’) — Eln(] (19)
J z=1
and
V() = iG(z1) | | Eln(Om(®)], i # k,
WO e Lt | ER20]- )], i=k.

(20)

Equations (19) and (20) allow us to determine the coeffi-
cient of variation (7) for each species, defined as the stan-
dard deviation divided by the mean. The coefficient of varia-
tion of the ith species is

_ \Valt) + M) - M7(r)

7:(1) M.(1)

(21)
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Taking first and second order derivatives of Eq. (18) and
using the quantities defined by Egs. (19) and (20), we find
equations for the time evolution of the first and second mo-
ments of the system,

dM(1)
dt

=C X M)+ C* (22)

and

d;—it) =CX V(@O +[CXVO] +W(r)+W(r), (23)
where C=C"+C%-C¢,
and W,,(r)= (C5+ Ci)M;(1).

Solving for the steady-state solution of the above differ-
ential equations yields exact solutions for the first and second
moments of the distribution of each species. We first con-
sider an “instant maturation” case in which the protein ma-
tures infinitely quickly, so that species protein and protein-
matured become identical. In this case, the system can be
described by reactions (1)—(4), and the state of the system is
fully characterized by the number of mRNA and protein mol-
ecules, whose mean (m) and coefficient of variation (7) are

M(0)=(E[n,(1)], ..., E[ns(1))),

¢

(mRNA) = MmrNA = (24)
(%]
c
TmRNA = \/ 2, (25)
€1
€13
<nprolein> = Mprotein = ocn (26)
2C4

and

1 C3
Tprotein = \/( ) (1 + ) . (27)
mprotein Cr+cy

As expected, the mean number of proteins expressed varies
directly with the transcription (c;) and translation (c3) sto-
chastic reaction constants and varies inversely with the
mRNA degradation (c,) and protein degradation (c¢,) con-
stants.

Analytic results also exist for models with finite matura-
tion steps (noninstant maturation), including the subsequent
species in the chain of maturation steps: protein-folded,
protein-oxidized, and protein-matured. However, the number
of terms in the expressions grows rapidly for these species,
and they are too cumbersome to reproduce here. The full
solutions were obtained using the MAPLE symbolic manipu-
lation package (Maplesoft, Waterloo, Ontario) [61]. To verify
the analytical results, we have carried out Monte Carlo real-
izations of the stochastic process corresponding to the set of
biochemical reactions [50], using BIONETS [51], a piece of
software specialized for that purpose.

We are mainly interested in the mean and variability of
the fully matured protein species, protein-matured, since this
is the form whose fluorescence is observable in biological
experiments. We also wish to examine the impact of neglect-
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FIG. 3. (Color online) Mean number of matured proteins versus
protein maturation time. The translation rate (constant c3) is varied
as shown, for a fixed transcription rate ¢;=0.46 s~!. The fastest
maturation time has ¢s=cg=4 s~! and c;=4"! 57!, and longer matu-
ration times (slower maturation rates) are achieved by successively
reducing all three constants by the same factor. The lines represent
analytical results from solving the master equations, while the
points represent computational simulations run for approximately
5 10° reaction update steps.

ing the maturation effects on estimates of the variability of
the protein species, and thus for each case we compare the
full model with the instant-maturation model described
above. In the following, we vary three sets of stochastic re-
action constants: transcription rate (c,), translation rate (c;),
and the maturation time (set by the reaction constants for the
folding, cyclization, and oxidation processes, cs, ¢4, and c7).
To alter the total maturation time, all three maturation con-
stants are varied by the same factor, and as noted above, the
maturation time is given as the average time to mature a
fraction (1-1/¢) of the protein.

Figure 3 shows the average number of matured proteins
as a function of maturation time (set by cs, ¢, and ¢;) and
translation rate (c3), keeping the transcription rate (c,) fixed.
As expected, the average number of mature (and thus experi-
mentally observable) proteins decreases with maturation
time and increases with translation rate. Figure 4 shows the
coefficient of variation of the matured protein species, again
as a function of translation rate (c;) and with varying matu-
ration times. The coefficient of variation decreases as the
translation rate increases, and over much of the range the
observed variability 7pyein-mared 18 increased by longer
maturation times. The increase in the coefficient of variation
from the instant-maturation to the finite-maturation cases
varies strongly with maturation time: at the lowest transla-
tion rate shown in Fig. 3, the difference is 8% for a matura-
tion time of 7 min, 160% for a 107 min maturation time, a
factor of 9 times for a 7-h maturation, and approximately a
factor of 50 times for a 28-h maturation time. Note that the
difference becomes less pronounced as the translation rate
increases, until in the high-translation-rate regime the behav-
ior is reversed and proteins that mature quickly (or instantly)
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FIG. 4. (Color online) Coefficient of variation (7, the standard
deviation over the mean) of the fully matured protein species versus
translation rate (c3), for varying fluorescent protein maturation
times, at a fixed transcription rate ¢;=0.46 s~'. The lines represent
analytical solutions from the master equations, and the points are
from computational simulations run for approximately 5% 10° re-
action update steps. The “instant maturation” case shows the result
when the proteins are taken to fluoresce instantly upon being pro-
duced. Note the high-rate regime wherein we see a qualitative
change in the behavior, and the instantly maturing protein is more
variable than the versions with finite maturation times. Stochastic
reaction constants for the maturation processes are of the form c;
=ce=4""s! and ¢;=4!"* 57!, with k taking on the following val-
ues: 7 min maturation time, k=5; 107 min, k=7; 7 h, k=8; and
28 h, k=9.

show higher variability than those that mature slowly. The
trends seen in Fig. 4 are the result of a combination of two
effects induced by maturation steps: The smaller number of
matured proteins than the total number produced, leading to
an increase in observed variability, and a noise-filtering ef-
fect arising from the maturation steps, leading to a decrease
in observed variability (described in Sec. II B, below).
Which effect dominates depends on the regime we consider.

To see the effect of changing the total number of matured
proteins on the coefficient of variation at a given maturation
time, we vary the transcription or translation constants,
equivalent to changing the promoter strength or the transla-
tional efficiency (e.g., by altering ribosome binding sites),
respectively. Figure 5 plots the coefficient of variation
against the mean number of matured proteins when the trans-
lation constant c3 is fixed, and we vary the transcription con-
stant ¢, for several different maturation times. Figure 6
shows the coefficient of variation as a function of mean num-
ber of matured proteins present when we fix the transcription
constant c¢; and vary the translation constant c3, for the same
set of maturation times.

The behavior of the curve of the “instant-maturation” case
in Figs. 5 and 6 may be understood by considering Egs. (26)
and (27), giving the mean and coefficient of variation for the
instant-maturation case. Taking logarithms and combining
Eqgs. (26) and (27), we find that a log-log plot of coefficient
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FIG. 5. (Color online) Coefficient of variation (7) of the fully
matured protein species versus mean protein number, for varying
fluorescent protein maturation times, at a fixed translation rate.
Mean protein numbers are varied by altering the transcription rate
(c}), keeping the translation rate fixed at c;=4.8 s™'. The dashed
line shows n=1/ dmprotein_matured. Reaction constants for the varying
maturation times are as given in Fig. 4.

of variation against mean protein number, in the instant-
maturation case, has the form

1
lOgl() protein =~ 2 loglO Mprotein +f(Cz,C3,C4) ) (28)

where f(c,,c3,¢4) = % log[1+c3/(cy+cy)]. Thus our log-log
plot of the coefficient of variation for the instantly maturing

0
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FIG. 6. (Color online) Coefficient of variation (7) of the fully
matured protein species versus mean protein number, for varying
fluorescent protein maturation times, at a fixed transcription rate.
For each protein maturation time, the translation rate (cs) is varied
while keeping the transcription rate fixed at ¢;=0.46 s™l. The
dashed line shows 7]=1/\5mpr(,tein_matured. Note that in the high-
number regime, the coefficient of variation deviates from %
=1/ \f'mpmlein_mawred, and the instantly maturing version shows less
variability than the finite-maturation-time versions. Reaction con-
stants for the varying maturation times are as given in Fig. 4.
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protein versus its mean has a constant slope of negative one-
half, offset by a constant depending only on the translation
rate (c3) and the mRNA and protein degradation rates (¢, and
c4); note that this slope is the same as that from the classical
result that the coefficient of variation varies inversely with
the square root of the mean for a Poisson process [55].

In Fig. 5, Eq. (28) yields a perfectly straight line on the
plot, since we are varying only the transcription rate ¢; and
thus the offset f(c,,c3,¢4) is fixed across the plot. The ana-
Iytic solution for the finite maturation time case does not
reduce to a simple form such as that of Eq. (27), but as Fig.
5 illustrates, the effect of the additional maturation steps in
the large translation rate case shown is to reduce the variabil-
ity of slow-maturing proteins compared to fast-maturing
ones at all different transcription rates, with the lower limit
being n:l/y"mprotein_mmured (appearing as a dashed line in
Figs. 5 and 6).

In Fig. 6, we are varying the translation rate c3, and thus
the offset f(c,,c3,c4) changes across the plot. For small
translation rates, corresponding to low mean numbers of ma-
tured proteins, f(c,,c3,c4) —1og;o 1=0, and thus the coeffi-
cient of variation approaches the 7=1/ \f'mpm[em_mmured limit
(shown as a dashed line on the plot). To address the behavior
at large translation rates (and thus large mean protein num-
bers), we note that Eq. (27) may be rearranged into the form
shown in Eq. (29), as has been previously derived [62]:

1
Tprotein =

mprolein

) + TRNAT (29)

Cr+Cy
As cj increases in Eq. (29), the 1/mqin term vanishes,
yielding 7coein = mrnaVCa/ (c2+¢4), a function only of ¢y,
¢y, and c,: for high translation rates, the variability of the
protein is dominated by that of the mRNA. Since we are only
varying cj in Fig. 6, this term will be a constant, yielding the
flat line seen in the high-number regime for the instant-
maturation case. The analytic solution for the finite-
maturation case once again does not have a compact form,
but as seen in Fig. 6, the filtering effect of the maturation
steps is observed only in the high-number (high-translation-
rate) regime, where the maturation process reduces the coef-
ficient of variation of proteins with slow maturation com-
pared to those with fast or instant maturation. The difference
in behavior in the high-number regime in this case arises
from a low-pass filtering effect created by the maturation
steps, as discussed in Sec. II B, below.

The results in Figs. 5 and 6 are not significantly affected
in the case where the fluorescent proteins are actively de-
graded by proteolysis rather than the degradation being
dominated by dilution due to cell growth. Taking the proteins
to degrade as rapidly as the mRNA by setting c,=c, yields a
revised Fig. 6 (not shown here) with the same features dis-
cussed above: the coefficient of variability is dominated by
the 1/mppoin term when the mean is small, converges to the
constant 7,rnayCa/ (c2+c¢y) for large protein numbers, and
shows a reduction in variability with increasing maturation
time in the large-number regime.

The results in this section clearly indicate that neglecting
protein-maturation effects will lead to significant underesti-
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mates of the number of proteins of interest being produced in
the cell (Fig. 3), since the number of observable (matured
and fluorescing) proteins decreases as the maturation time
increases. The observed fluorescence also provides an inac-
curate measure of the variability in the total production of
the target protein (Figs. 5 and 6). When the translation rate is
small, the small-number effects dominate and the increased
variability introduced by the process of maturation closely
matches that expected from the reduced mean numbers of
matured proteins present, whereas at higher translation rates
the trend is reversed, with maturation acting to reduce the
observed variability. This latter effect arises from a low-pass
filtering introduced by the maturation steps, as we will show
by considering noise power spectra, below.

B. Noise power spectra

To further investigate how the fluctuations in species
numbers are affected by the addition of the maturation steps,
we calculate noise power spectra using a method developed
by Warren et al. [63]. The noise power spectrum is the Fou-
rier transform of the autocorrelation function and is defined
as

Piw)=2 f i cos(wn)R;(1). (30)

0

The correlation function is defined as
R;i(1) = (Ani(0)Any(1)), (31)

where An;(t) =n,(t)-E[n,(1)].
The noise power spectra follow the sum rule

W_lf Plw)dw= 0'?, (32)
0

where o7 is the variance of the ith species. In the following
analysis, we redefine the noise power spectrum to be
P(w)/{n;)?, so that the integral of the noise power spectrum
will simply equal 7r(7)?, a convenient form given our use of
the coefficient of variation as an indicator of the degree of
variability in a species.

The equations for the noise power spectra can be obtained
by taking the Laplace transform of a set of differential equa-
tions giving the time evolution of the correlation coefficients
[63]. Solving those equations in MAPLE, we get the analytical
results for the noise power spectra; again, the detailed results
are too unwieldy to reproduce here [61].

Figure 7 shows the noise power spectra for different spe-
cies for a parameter set where the noise is suppressed by the
maturation steps—that is, where the coefficient of variation
of the matured species is lower for finite maturation times
than when the maturation is taken to happen instantly (see
the high-number regime in Fig. 6 and the whole range of Fig.
5). The noise power spectrum for a given species is obtained
by neglecting all reactions (except degradation) downstream
of the species of interest.

Equations (25) and (27) demonstrate that for certain pa-
rameter values [when c;>c,(1+c4/cy)], the coefficient of
variation of the protein can be lower than that of the mRNA.
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FIG. 7. (Color online) Noise power spectra for different species
in the model, calculated as described in the text, at transcription rate
¢1=0.46 s~!, translation rate ¢;=4.8 s~!, and a maturation time of
107 min (cs=ce=47> s7!, ;=470 s7!). Parameter settings have
been chosen to yield lower noise in the matured protein species than
in the instant-maturation case (not shown). The curves shown are
analytic solutions, with points added only to distinguish between
the lines.

This may also be seen in the noise power spectra shown in
Fig. 7. Except in the very-low-frequency range, the noise
power of the protein species is smaller than that of the
mRNA species. The fluctuations in the mRNA level are
partly suppressed by the translation reaction, which acts like
a low-pass filter.

Figure 7 also shows the noise power spectra for the spe-
cies protein-folded, protein-cyclized, and protein-matured.
Each of the three maturation steps decreases the noise in the
middle frequency range, increases the noise at high frequen-
cies, and very slightly increases the noise at the low-
frequency end of the spectrum. Samoilov er al. [64] conclude
using deterministic analysis that linear feedforward networks
of chemical reactions act as low-pass filters, while Warren et
al. [63] examine stochastic reaction behavior, noting that
such reactions combine low-pass filtering with an injection
of noise from their own noisy reaction rates, creating a noisy
low-pass filter. In Fig. 7 the model has been placed in a
regime wherein the low-pass filtering effects dominate and
the coefficient of variation of the final matured protein spe-
cies is lower than in the instant-maturation case. Figure 8
shows a different parameter set, where the coefficient of
variation of the matured protein is higher than for the instant-
maturation case. Here, the low-pass filtering behavior is still
visible as a reduction in noise power in the higher-frequency
ranges, but this reduction in noise power is dominated by an
increase in noise power in the low-frequency range, leading
to an overall increase in variability as a result of the matu-
ration steps.

Consider just the final step in the maturation process, the
oxidation of protein-cyclized that yields protein-matured.
The noise in protein-matured is affected by three factors: The
intrinsic noise introduced by fluctuations in the rate of the
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FIG. 8. (Color online) Noise power spectra for different species
in the model, at transcription rate ¢;=0.46 s71, translation rate c3
=0.0047 s7!, and maturation time 107 min (cs=ce=4"s"', c;
=476 571). Parameter settings have been chosen to yield higher
noise in the matured protein species than in the instant-maturation
case (not shown). The curves shown are analytic solutions, with

points added only to distinguish between the lines.

oxidation reaction itself, the extrinsic noise from the previ-
ous step in the process (that is, the noise in protein-cyclized),
and the suppression of the extrinsic noise by the action of the
oxidation reaction. The presence of the oxidation step has
two effects: It acts also as a low-pass filter on the noise from
upstream (that is, the noise in the species protein-cyclized)
and it adds the noise from its own fluctuations [63]. The
intrinsic noise introduced by the oxidation step may be cal-
culated by fixing the number of protein-cyclized at its mean
value and generating the noise power spectrum for species
protein-matured under these conditions. To examine the fil-
tering effect, we subtract this intrinsic noise spectrum from
the full noise power spectrum of protein-matured and denote
the remaining noise power spectrum as the “extracted extrin-
sic noise” of the matured species. This noise spectrum, along
with the original spectra for the cyclized and matured spe-
cies, is plotted in Fig. 9; note the large degree of suppression
of the higher frequencies evident in the extracted extrinsic
noise. We then compute the “passing ratio” for the process
by dividing the extracted extrinsic noise in protein-matured
by the total noise present in protein-cyclized. The result is
plotted in Fig. 10, which clearly shows the noisy low-pass
filter behavior of this single-step maturation process. Increas-
ing the maturation time has the effect of increasing the range
of frequencies over which the low-pass filtering effect oper-
ates, and thus for equal mean numbers of matured protein,
longer maturation times will yield a lower observed coeffi-
cient of variation, as seen in Fig. 6. Each step in the full
maturation process has the same structure as the final step
considered here, so the noise suppression is repeated and
augmented through the folding, cyclization, and oxidation
steps leading to the fully matured protein.

Figure 11 shows the noise power spectra for different
maturation times at a fixed transcription and translation rate.
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FIG. 9. (Color online) Noise power spectra for species protein-
cyclized, protein-matured, and protein-matured minus the intrinsic
noise power spectrum of the conversion reaction, which gives the
level of upstream extrinsic noise power (from protein-cyclized) still
present in species protein-matured, at transcription rate c
=0.46 s~!, translation rate c;=4.8 s~!, and maturation time 107 min
(cs=ce=47 571, ¢;=47% s71). The curves shown are analytic solu-
tions, with points added only to distinguish between the lines.

At the same mean level of protein expression, longer matu-
ration times lead to greater noise suppression (see Fig. 6),
but with fixed transcription and translation rates, longer
maturation times yield lower numbers of mature proteins.
Figure 11 thus illustrates the competition between the injec-
tion of extra noise from the additional reaction steps and the
low-pass filtering effect of these reactions: At the parameters
shown, for short maturation times the filtering effect domi-
nates, reducing the noise power by filtering away higher-
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FIG. 10. (Color online) Passing ratio of the upstream extrinsic
noise through the final maturation reaction step (oxidation), for dif-
ferent maturation times, at transcription rate ¢;=0.46 s~! and trans-
lation rate c;=4.8 s!. The curves shown are analytic solutions,
with points added only to distinguish between the lines.
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FIG. 11. (Color online) Noise power spectrum for different
maturation times while trancription rate and translation rate are kept
constant, at transcription rate c;=0.46 s™' and translation rate c;
=4.8 57!, The curves shown are analytic solutions, with points
added only to distinguish between the lines.

frequency components; at longer maturation times, this effect
is swamped by the injection of fluctuations caused by low-
ering the molecule numbers, and the 27-h maturation time
yields higher noise power at all frequencies, with a corre-
sponding increase in the observed coefficient of variation.

III. CONCLUSION

We have examined a model of the production of fluores-
cent reporter proteins incorporating significant simplifica-
tions: we have omitted a number of intermediate steps in
gene expression, and we have neglected nonlinear effects
arising from processes such as regulatory feedback. The pa-
rameter settings have been selected to reflect typical values
for Escherichia coli and thus may not be appropriate for all
organisms.

Keeping these caveats in mind, we may use the model to
extract information about the effects of protein maturation on
what is seen experimentally when using fluorescent proteins
as reporters. As we have seen, the observed level and vari-
ability of gene expression can be significantly affected by the
maturation steps that must be completed before a fluorescent
protein can generate fluorescence output. Interestingly, the
effect is not uniformly in the direction of increasing the ob-
served variability: In some regimes, the observed variability
may in fact decrease compared to the actual variability of the
total protein production. The maturation process has two ef-
fects: It introduces additional intrinsic noise from fluctua-
tions in the rates of the maturation reactions, and it acts as a
low-pass filter, removing some of the noise from earlier steps
in the gene expression process. Longer maturation times lead
to a smaller pass band in the low-pass filter, which increases
the frequency range of upstream noise filtered out; at the
same time, longer maturation times introduce larger intrinsic
noise. Combining these two effects for a given translation
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rate, there is a range of maturation times where the noise in
the output (matured) protein is suppressed rather than en-
hanced, with the suppression manifesting itself as a reduction
in noise power in the intermediate frequency ranges. The
low-pass filtering acts to smooth out bursts of protein pro-
duction from the translation process. Thus the noise-
reduction effect occurs most strongly at large translation
rates, which will have more high-frequency components in
the immature protein numbers, and at longer maturation
times, which will have smaller passing bands for the low-
pass filter effect. In general, we observe that the larger the
translation rate, the larger will be the set of maturation times
able to suppress the variability in the matured protein, and
the longer the maturation time, the stronger the noise-
suppression effect will be. Though we have analyzed the
case of maturation of a fluorescent protein, the model can
represent any linear chain of transformation reactions, and
thus our results might be of use in other cases as well.

Based on the model, the process of fluorescent protein
maturation affects the observed number of proteins present,
when fluorescent reporters are used as reporters in living
cells; as expected, the longer the maturation time, the fewer
matured proteins will be visible relative to the total protein
population. It is perhaps less intuitively clear that this matu-
ration process also affects the observed variability in gene
expression and that the effect can either increase or decrease
the observable coefficients of variation relative to the true
variability of the protein population. In either case, it is clear
that the maturation process can potentially introduce a sig-
nificant perturbation on the observed data and should be
taken into account in quantitative studies of gene expression.
Our model suggests a method of correcting experimental
data to yield more accurate measurements of levels of pro-
tein expression and variability, and future work could extend
these results to more complex systems.
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APPENDIX

The connection between the stochastic reaction constants
(c) and the deterministic reaction-rate constants (k) [50] is
ci=ky/v, cy=ky, ci=k3/v, c4=ky, c5=ks, cg=ke, and c;=ky,
where v is the volume of the cell.

The reaction rates used for the parameter sweep are listed
below: Transcription rate: c¢;=c|ngnaplipna=(417"1X2
X 10712 1s71) /v X 7600 X 154=4"""1X 117 s7!,  where m,
=1,...,7, we take the number of RNAP and DNA to be
7600 and 154, respectively (modeling a medium-copy plas-
mid bearing many copies of the fluorescent protein of inter-
est) [49,58], and we assume a typical E. coli cell volume of
v=2X10""1 [65]. Degradation rate of mRNA: c¢,=4.2
% 1073 57!, corresponding to a typical bacterial mRNA half-
life of 4.8 min [45]. Translation rate: c3=cjng,,=(41""2X2
X107 1s71)/v X 48 000=4!"2x4.8 s7!,  where  m,
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=1,...,10, and we take the number of ribosomes to be
48000 [49,58]. Degradation rate of protein: ¢,
=In2/(1440 s)=4.8 X 10 57!, representing the effective
degradation of proteins through dilution by cell growth dur-
ing a 1440-s (24-min) cell division cycle. Folding rate: cs

=423 571 my=1,...,20. Cyclization rate: cq=4>"3s7",
my=1,...,20. Oxidation rate: c;=4'"3 57! my=1,...,20
[37-39].

The maturation time is calculated for the case where
the protein is subject to no processes other than maturation;
that is, we neglect degradation and consider the following
three reactions: protein— protein-folded, protein-folded
— protein-cyclized, and protein-cyclized — protein-matured.
The average protein-matured number as a function of time,
given an initial protein number p, is

PHYSICAL REVIEW E 77, 021908 (2008)

CsPo ( C7 (&5 — 1)

mprotein—matured(t ) = (

C5—C6) \ C7—Cs
c celcg—c
+ 7 (e = 1) + 6(ce—¢7)
Co—C7 (c7—cs)
X(e_c7’—l)).

We solve the above equation numerically for the time at
which the number of the species protein-matured will be (1
—1/e)p,, or equivalently when the immature protein number
will be py/e.
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